Search results for " order parameter"
showing 5 items of 5 documents
Mean-field theory for superconductivity in twisted bilayer graphene
2018
Recent experiments show how a bilayer graphene twisted around a certain magic angle becomes superconducting as it is doped into a region with approximate flat bands. We investigate the mean-field s-wave superconducting state in such a system and show how the state evolves as the twist angle is tuned, and as a function of the doping level. We argue that part of the experimental findings could well be understood to result from an attractive electron-electron interaction mediated by electron-phonon coupling, but the flat-band nature of the excitation spectrum also makes the superconductivity quite unusual. For example, as the flat-band states are highly localized around certain spots in the st…
Scanning tunnelling spectroscopy study of paramagnetic superconducting β''-ET(4)[(H(3)O)Fe(C(2)O(4))(3)]·C(6)H(5)Br crystals.
2010
Scanning tunnelling spectroscopy (STS) and microscopy (STM) were performed on the paramagnetic molecular superconductor β''-ET(4)[(H(3)O)Fe(C(2)O(4))(3)]·C(6)H(5)Br. Under ambient pressure, this compound is located near the boundary separating superconducting and insulating phases of the phase diagram. In spite of a strongly reduced critical temperature T(c) (T(c) = 4.0 K at the onset, zero resistance at T(c) = 0.5 K), the low temperature STS spectra taken in the superconducting regions show strong similarities with the higher T(c) ET κ-derivatives series. We exploited different models for the density of states (DOS), with conventional and unconventional order parameters to take into accoun…
Mean-field theory for superconductivity in twisted bilayer graphene
2018
Recent experiments show how a bilayer graphene twisted around a certain magic angle becomes superconducting as it is doped into a region with approximate flat bands. We investigate the mean-field $s$-wave superconducting state in such a system and show how the state evolves as the twist angle is tuned, and as a function of the doping level. We argue that part of the experimental findings could well be understood to result from an attractive electron--electron interaction mediated by electron--phonon coupling, but the flat-band nature of the excitation spectrum makes also superconductivity quite unusual. For example, as the flat-band states are highly localized around certain spots in the st…
Computer simulation studies of finite-size broadening of solid–liquid interfaces: from hard spheres to nickel
2009
Using Molecular Dynamics (MD) and Monte Carlo (MC) simulations interfacial properties of crystal-fluid interfaces are investigated for the hard sphere system and the one-component metallic system Ni (the latter modeled by a potential of the embedded atom type). Different local order parameters are considered to obtain order parameter profiles for systems where the crystal phase is in coexistence with the fluid phase, separated by interfaces with (100) orientation of the crystal. From these profiles, the mean-squared interfacial width w^2 is extracted as a function of system size. We rationalize the prediction of capillary wave theory that w^2 diverges logarithmically with the lateral size o…
Odd triplet superconductivity induced by a moving condensate
2020
It has been commonly accepted that a magnetic field suppresses superconductivity by inducing the ordered motion of Cooper pairs. We demonstrate that a magnetic field can instead provide a generation of superconducting correlations by inducing the motion of a superconducting condensate. This effect arises in superconductor/ferromagnet heterostructures in the presence of Rashba spin-orbital coupling. We predict the odd-frequency spin-triplet superconducting correlations called the Berezinskii order to be switched on at large distances from the superconductor/ferromagnet interface by the application of a magnetic field. This is shown to result in the unusual behavior of Josephson effect and lo…